Analysis 1
 20 December 2023

Warm-up: Give three functions thatch have $38 x^{26}$ as their first derivative.

An anti-derivative of f is a function whose derivative is f. So " $F(x)$ is an anti-derivative of $f(x)$ " means that $F^{\prime}(x)=f(x)$.

Task: Describe all anti-derivatives of $10 x^{4}$.

$$
2 x^{5}+a n y \text { conslank }
$$

Il's common lo wrile chis as $2 x^{5}+C$.
When we calculate the "area under a curve" (really the signed area), we consider parts of the shape below the x-axis to have negative area.

Example: The "area under $y=2-\frac{1}{2} x$ from $x=0$ to $x=4$ " is

$$
\begin{aligned}
& \frac{1}{2}(\text { height)(base) } \\
& =\frac{1}{2}(4)(2)=4
\end{aligned}
$$

Example: The "area under $y=2-\frac{1}{2} x$ from $x=0$ to $x=6$ " is

Definite Inkegrals

We write

$$
\int_{a}^{b} f(x) \mathrm{d} x
$$

"the integral of f from a to b"
for the area under $y=f(x)$ between $x=a$ and $x=b$.

The Fundamental Theorem of Calculus

If f is continuous, then $\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)$, where $F(x)$ is any function for which $F^{\prime}(x)=f(x)$.

The Fundamental Theorem of Calculus (or FTC) can be used to find the area from the triangle examples.

$$
\int_{0}^{6}\left(2-\frac{1}{2} x\right) d x=F(6)-F(0)
$$

$$
\begin{gathered}
\text { FTC } \\
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) \\
\text { with } F^{\prime}=f
\end{gathered}
$$

where $F^{\prime}(x)=2-\frac{1}{2} x$.
Using $F(x)=2 x-\frac{1}{4} x^{2}$, we get

$$
F(6)-F(0)=\left(2(6)-\frac{1}{4}(6)^{2}\right)-(0-0)=3
$$

Subtraction

Because we do $F(b)-F(a)$ so often, it is helpful to have a shorter way to write this. The notation

$$
\left.g(x)\right|_{x=a} ^{x=b} \quad \text { or }\left.\quad g(x)\right|_{a} ^{b}
$$

means $g(b)-g(a)$.
This is NOT an integral. It is just subtraction.

Example: Calculate $\left.\cos (x)\right|_{0} ^{\pi}$.
not the same as
$\int_{a}^{b} g d x$

$$
\cos (\pi)-\cos (0)=(-1)-(1)=-2
$$

Task 1: Calculate

$$
\begin{aligned}
\int_{-5}^{4} \frac{1}{3} x^{2} \mathrm{~d} x & =\left.\frac{1}{9} x^{3}\right|_{X} ^{x}=4 \quad \int_{a}^{b} f(x) \mathrm{d} x=\left.F(x)\right|_{x=a} ^{x=b} \text { with } F^{\prime}=f \\
& =\frac{1}{9}(4)^{3}-\frac{1}{9}(-6)^{3} \leftarrow F(b)-F(a) . \\
& =\frac{64}{9}-\frac{-126}{9} \\
& =\frac{189}{9}=21
\end{aligned}
$$

The properties below can be explained-and therefore easily remembered!-by thinking of (signed) area or thinking of anti-derivatives. Assume f, g are functions, and a, b, c are constants.

- $\int_{a}^{b} f \mathrm{~d} x+\int_{b}^{c} f \mathrm{~d} x=\int_{a}^{c} f \mathrm{~d} x$
- $\int_{a}^{b}(c \cdot f) \mathrm{d} x=c \cdot \int_{b}^{a} f \mathrm{~d} x$
$\int_{a}^{b} f \mathrm{~d} x+\int_{a}^{b} g \mathrm{~d} x=\int_{a}^{b}(f+g) \mathrm{d} x$

$$
\int_{a}^{b} f \mathrm{~d} x=-\int_{b}^{a} f \mathrm{~d} x
$$

Task 2: Calculate $\int_{0}^{5} x-2 \mathrm{~d} x$.

Final answer: 13/2

Task 3: Calculate $\int_{0}^{6 \pi} f(x) \mathrm{d} x$ for the function $f(x)= \begin{cases}e^{x-\pi} & \text { if } x \leq \pi \\ 2 \cos (x) & \text { if } x>\pi\end{cases}$

Final answer: $1-e^{-\pi}$

Definite vs. Indefinite \int

The integrals we have done so far are examples of "definite integrals".

- Definite: $\int_{1}^{2} x^{2} \mathrm{~d} x=\frac{7}{3}$

In order to calculate this, we needed to use $\frac{1}{3} x^{3}$.

An indefinite integral is just a way of writing all the anti-derivatives of a function. We use the \int symbol but do not put any numbers at the top or bottom.

- Indefinite: $\int x^{2} \mathrm{~d} x=\frac{1}{3} x^{3}+C$

Notation (how to write math)

All the ways of writing derivatives are still common today.

Only $\int f \mathrm{~d} x$ is common for anti-derivatives. We will talk more about this notation later.

Power Rule
Derivatives: $\frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1}$
Integrals: $\int x^{n} \mathrm{~d} x=\frac{1}{n+1} x^{n+1}+C$ if $n \neq-1$ $\int x^{-1} d x=\ln (x)+C$

$$
\text { Find } \begin{aligned}
\int\left(\cos (x)+2 x^{6}\right) d x & =\left(\int \cos (x) d x\right)+2\left(\int x^{6} d x\right) \\
& =\left(\sin (x)+C_{1}\right)+2\left(\frac{1}{7} x^{7}+C_{2}\right) \\
& =\sin (x)+\frac{2}{7} x^{7}+C_{3}
\end{aligned}
$$

We are using " $+C$ " to mean "plus any constant" each time.

$$
C_{3}=C_{1}+2 C_{2}
$$

Find

$$
\begin{aligned}
\int\left(\cos (x)+2 x^{6}\right) d x & =\left(\int \cos (x) d x\right)+2\left(\int x^{6} d x\right) \\
& =(\sin (x)+C)+2\left(\frac{1}{7} x^{7}+C\right) \\
& =\sin (x)+\frac{2}{7} x^{7}+C
\end{aligned}
$$

We are using " $+C$ " to mean "plus any constant" each time.

$$
\begin{aligned}
& \int \sin (x) \mathrm{d} x=-\cos (x)+C \quad \begin{array}{r}
\int \sqrt{x} \mathrm{~d} x=\int x^{1 / 2} d x \\
=\frac{2}{3} x^{3 / 2}+C
\end{array} \\
& \int 8^{x} \mathrm{~d} x=\frac{1}{\ln (8)} 8^{x}+C
\end{aligned}
$$

$$
\int u^{8} d u=\frac{1}{9} u^{9}+C
$$

Find $\int\left(x^{2}+5\right)^{8}(2 x) \mathrm{d} x$.
Hint: Use a new variable $u=x^{2}+5$.

$$
u=x^{2}+s \longrightarrow \frac{d u}{d x}=2 x \longrightarrow d u=2 x d x
$$

It may seem like cheating to pretend that $d u / d x$ is a fraction, but it's actually very helpful to say $d u=2 x d x$ because we can use this to rewrite the original integral as an integral with u.

$$
\int\left(x^{2}+6\right)^{8} 2 x d x=\int u^{8} d u=\frac{1}{9} u^{9}+C=\frac{1}{9}\left(x^{2}+6\right)^{9}+C
$$

u-substitution

When we see a function and its derivative in a certain configuration, we can re-write an integral using "substitution".

- As a general formula, we have

$$
\int f(g(x)) g^{\prime}(x) \mathrm{d} x=\int f(u) \mathrm{d} u, \quad \text { where } u=g(x)
$$

but examples may be easier to understand than this formula.

- We often use u as the new variable of integration, so this method is also called "u-substitution".

Task 1: Find $\int 6 x^{2} \cos \left(x^{3}+9\right) d x$
In general, we need $f(u)$ multiplied by u^{\prime} or by Nu' with k conslank. $\cos \left(x^{3}+9\right) \quad 3 x^{2} \quad \frac{1}{3}\left(3 x^{2}\right)$

Using $u=x^{3}+9$, we can gel the answer $2 \sin \left(x^{3}+9\right)+C$.

Task 2: Find $\int \frac{1}{x \ln (x)} \mathrm{d} x$.
You can try each of these:

$$
\begin{array}{l|l|l}
u=\ln (x) & u=\frac{1}{\ln (x)} & u=\frac{1}{x} \\
d u=\ldots & d u=\ldots & d u=\ldots
\end{array}
$$

Only $u=\ln (x)$ is actually useful. Final answer: $\ln (\ln (x))+C$.

